ZetHUB
Administrator
- Регистрация
- 18 Дек 2018
- Сообщения
- 46.063
- Реакции
- 10.027
Другие темы автора:
[Алекс Мэй] Подписка на телеграм канал (Декабрь 2025)
[Дмитрий Агарков] Система планирования жизни с ии-агентом Я 2.0 на...
[УОМ] Мозг и нейронауки. Модуль 1. Биоархитектура мозга (2025)
[winger_angel] Наталия Брижатюк → МК «Моя карма- деньги» (2025)
[Ирина Подрез] Стратегическая карта 2026-2027. Тариф Базовый (2025)
[Дмитрий Агарков] Система планирования жизни с ии-агентом Я 2.0 на...
[УОМ] Мозг и нейронауки. Модуль 1. Биоархитектура мозга (2025)
[winger_angel] Наталия Брижатюк → МК «Моя карма- деньги» (2025)
[Ирина Подрез] Стратегическая карта 2026-2027. Тариф Базовый (2025)
- #1
Голосов: 0
[ДМК] Конформное прогнозирование в Python [Валерий Манохин, Артем Груздев]
Данная книга предлагает углубленное изучение конформного прогнозирования — новейшего подхода, позволяющего управлять неопределенностью в различных задачах машинного обучения. Вы узнаете, как конформное прогнозирование создает точно откалиброванные прогнозные интервалы для регрессии и решает задачи прогнозирования временных рядов и несбалансированных данных. Практические примеры на Python, а также использование реальных наборов данных, экспертных рекомендаций и открытых библиотек обеспечат вам глубокое понимание этого подхода.
В числе рассматриваемых тем:
Для изучения материала понадобятся базовые знаниями в области машинного обучения и программирования на Python.
Издание: Цветное
Оригинальное Наименование: Practical Guide to Applied Conformal Prediction in Python
Авторство: Манохин В., Груздев А.В.
Формат: PDF.
Скачать
Данная книга предлагает углубленное изучение конформного прогнозирования — новейшего подхода, позволяющего управлять неопределенностью в различных задачах машинного обучения. Вы узнаете, как конформное прогнозирование создает точно откалиброванные прогнозные интервалы для регрессии и решает задачи прогнозирования временных рядов и несбалансированных данных. Практические примеры на Python, а также использование реальных наборов данных, экспертных рекомендаций и открытых библиотек обеспечат вам глубокое понимание этого подхода.
В числе рассматриваемых тем:
- основные концепции и принципы конформного прогнозирования;
- отличие конформного прогнозирования от традиционных методов машинного обучения;
- конформное прогнозирование для несбалансированных наборов данных и многоклассовой классификации;
- передовые методы измерения и управления неопределенностью в промышленных задачах;
- конформный подход к оценке неопределенности в прогнозировании и NLP.
Для изучения материала понадобятся базовые знаниями в области машинного обучения и программирования на Python.
Издание: Цветное
Оригинальное Наименование: Practical Guide to Applied Conformal Prediction in Python
Авторство: Манохин В., Груздев А.В.
Формат: PDF.
Скачать