ZetHUB
Administrator
- Регистрация
- 18 Дек 2018
- Сообщения
- 46.063
- Реакции
- 10.027
Другие темы автора:
[Алекс Мэй] Подписка на телеграм канал (Декабрь 2025)
[Дмитрий Агарков] Система планирования жизни с ии-агентом Я 2.0 на...
[УОМ] Мозг и нейронауки. Модуль 1. Биоархитектура мозга (2025)
[winger_angel] Наталия Брижатюк → МК «Моя карма- деньги» (2025)
[Ирина Подрез] Стратегическая карта 2026-2027. Тариф Базовый (2025)
[Дмитрий Агарков] Система планирования жизни с ии-агентом Я 2.0 на...
[УОМ] Мозг и нейронауки. Модуль 1. Биоархитектура мозга (2025)
[winger_angel] Наталия Брижатюк → МК «Моя карма- деньги» (2025)
[Ирина Подрез] Стратегическая карта 2026-2027. Тариф Базовый (2025)
- #1
Голосов: 0
Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow
Эта книга - замечательное введение в теорию и практику решения задач с помощью нейронных сетей. Она охватывает ключевые моменты, необходимые для построения эффективных приложений, а также обеспечивает достаточную основу для понимания результатов новых исследований по мере их появления. Я рекомендую эту книгу всем, кто заинтересован в освоении практического машинного обучения."
- Пит Уорден, технический руководитель направления TensorFlow
Благодаря серии недавних достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на основе данных. В настоящем практическом руководстве показано, что и как следует делать.
За счет применения конкретных примеров, минимума теории и двух фреймворков Python производственного уровня - Scikit-Learn и TensorFlow - автор книги Орельен Жерон поможет вам получить интуитивное представление о концепциях и инструментах, предназначенных для построения интеллектуальных систем. Вы узнаете о ряде приемов, начав с простой линейной регрессии и постепенно добравшись до глубоких нейронных сетей. Учитывая наличие в каждой главе упражнений, призванных закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования.